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Abstract
Recently obtained results on linear energy bounds are generalized to arbitrary
spin quantum numbers and coupling schemes. Thereby, the class of so-called
independent magnon states, for which the relative ground-state property can be
rigorously established, is considerably enlarged. We still require that the matrix
of exchange parameters has constant row sums, but this can be achieved by
means of a suitable gauge and need not be considered as a physical restriction.

PACS numbers: 75.10.Jm, 75.50.Xx

1. Introduction

For ferromagnetic spin systems the ground-state |↑↑ . . .↑〉 and the first few excited states,
called magnon states, are well known and extensively investigated (see, e.g., [1]). For anti-
ferromagnetic (AF) coupling the state |↑↑ . . .↑〉 will be the state of highest energy, and could
be called the ‘anti-ground-state’. Also the magnon states which have a large total spin quantum
number S are still eigenstates of the Heisenberg Hamiltonian, but seem to be of less physical
importance at first glance, since in thermal equilibrium they are dominated by the low-lying
eigenstates. However, these states will become ground states if a sufficient strong magnetic
field H is applied, since the Zeeman term in the Hamiltonian will give rise to a maximal energy
shift of −µBgSH. Hence the magnon states are still important for the magnetization curve
M(H), especially at low temperatures.

What can then be said about the energies of the magnon states in general? The anti-
ground-state (or ‘magnon vacuum’) has the energy E0 = J s2 and the total magnetic quantum
number M = Ns. Here N denotes the number of spins with individual spin quantum number
s and J denotes the sum of all exchange parameters of the spin system (see section 2 for
details). The 1-magnon states lie in the subspace with M = Ns − 1. Their energies can
be calculated, up to a constant shift and a factor 2s, as the eigenvalues of the symmetric
N × N-matrix of exchange parameters, which can be done exactly in most cases. Let Emin

1
denote the smallest of these energies. More generally, we will write Emin

a for the minimal
energy within the subspace with total magnetic quantum number M = Ns − a. It turns out
that typically the graph of a �→ Emin

a will be an approximate parabola with positive curvature
(see [2, 3]). However, there are exceptions to this rule (see [4, 5]), one exception being given
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by the recently discovered ‘independent magnon states’ [6, 7]. Here, for some small values of
a, we have

Emin
a = (1 − a)E0 + aEmin

1 (1)

i.e. a �→ Emin
a is locally an affine function. The existence of states satisfying (1) is not just a

curiosity but has interesting physical consequences with respect to magnetization: since the
Zeeman term is also linear in a, the independent magnon states simultaneously become ground
states at the saturation value of the applied magnetic field. One would hence observe a marked
jump in the magnetization curve M(H) at zero temperature (see the discussion in [6]). Other
examples of spin systems exhibiting jumps in the magnetization curve due to linear parts of
the energy spectrum are known (see [8–13]).

The independent magnon states which satisfy (1) can be analytically calculated. In
order to rigorously prove that their energy eigenvalues are minimal within the subspaces with
M = Ns − a, one could try to prove a general inequality of the form

Emin
a � (1 − a)E0 + aEmin

1 (2)

for all a = 0, . . . , 2Ns and AF-coupling. Geometrically, (2) means that energies in the plot of
E versus a lie on or above the line joining the first two points with E0 and E1. A proof of (2)
is given in [6] only for the special case of s = 1

2 and certain homogeneous coupling schemes.
This is an unsatisfying situation since the independent magnon states constructed in [6, 7] can
be defined for any s and their minimal energy property is numerically established without any
doubt.

Thus, this paper is devoted to the generalization of the quoted proof to arbitrary s and
coupling schemes. The only assumption we need is that the exchange parameters Jµν have
equal signs. For AF-coupling, i.e. Jµν � 0, we obtain (2). The ferromagnetic case Jµν � 0 is
completely analogous and yields

Emax
a � (1 − a)E0 + aEmax

1 (3)

with self-explaining notation. Hence, it will not be necessary to consider the ferromagnetic
case separately in the rest of this paper.

As remarked before, it is an obvious benefit of the generalization of the quoted proof
to rigorously establish the minimal energy property of the independent magnon states for
arbitrary s. Moreover, it is now easy to extend the construction of independent magnon states
to coupling schemes with different exchange parameters. For example, one could consider
a cuboctahedron with two different exchange constants: J1 > 0 for the bonds within two
opposing squares and J2 satisfying 0 < J2 < J1 for the remaining bonds. This coupling
scheme would admit the same independent magnon states as those considered in [6].

The technique of the proof of generalized inequality is essentially the same as that of the
old one. The generalization to arbitrary s is achieved by replacing every spin site with spin s by
a group of 2s spin sites with spin 1

2 and the coupling between two spins by a uniform coupling
between the corresponding groups. The energy eigenvalues of the new system include the
eigenvalues of the old one. In this way the proof can be reduced to the case of s = 1

2 . In the
next step, we embed the Hilbert space of the spin- 1

2 system into some sort of bosonic Fock
space for magnons and compare the Heisenberg Hamiltonian with that for the ideal magnon
gas. The difference of these two Hamiltonians has two components of different origins: first,
there occurs some (positive definite) term due to a kind of ‘repulsion’ between magnons. Only
here the AF-coupling assumption is needed. Second, the ‘kinetic energy’ part (or XY-part) of
the magnon gas Hamiltonian produces some unphysical states, due to the fact that the magnon
picture is only an approximation of the real situation. The necessary projection onto the
physical states further increases the ground-state energy. Both components introduce a >-sign
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in (2). As far as the Heisenberg spin system can be exactly viewed as an ideal magnon gas,
we have an =-sign in (2) as for independent magnons. The analogy of an antiferromagnet in
a strong magnetic field with a repulsive Bose gas is well known (see, for example, [14–16]).

The paper is organized as follows: section 2 contains the pertinent notation and definitions,
section 3 the main theorem together with its proof in two steps (sections 3.1 and 3.2) and
section 4 a short discussion.

2. Notation and definitions

We consider systems with N spin sites, individual spin quantum number s and Heisenberg
Hamiltonian

H =
N∑

µ,ν=1

Jµν sµ · sν . (4)

Here sµ = (
s(1)
µ , s(2)

µ , s(3)
µ

)
is the (vector) spin operator at site µ and Jµν is the exchange

parameter determining the strength of the coupling between sites µ and ν. Jµν will be
considered as the entries of a real N × N-matrix J. As usual,

S(i) ≡
∑
µ

s(i)
µ (i = 1, 2, 3) (5)

and

s±
µ ≡ s(1)

µ ± is(2)
µ µ = 1, . . . , N. (6)

The Hilbert space which is the domain of definition of the various operators considered will
be denoted by H(N, s). It can be identified with the N-fold tensor product

H(N, s) =
N⊗

i=1

H(1, s). (7)

Note that the exchange parameters Jµν are not uniquely determined by the Hamiltonian H via
(4). Different choices of the Jµν leading to the same H will be referred to as different ‘gauges’.

First, the anti-symmetric part of J does not enter into (4) and could be chosen arbitrarily.
However, throughout this paper we will choose Jµν = Jνµ, i.e. consider J as a symmetric
matrix. Second, the diagonal part of J is not fixed by (4). Since sµ · sµ = s(s + 1)1 we may
choose arbitrary diagonal elements Jµµ without changing H, as long as their sum vanishes,
Tr J = 0. The usual gauge chosen throughout the literature is Jµµ = 0, µ = 1, . . . , N,

which will be called the ‘zero gauge’. In this paper, however, we will choose another gauge,
called the ‘homogeneous gauge’, which is defined by the condition that the row sums

Jµ ≡
∑

ν

Jµν (8)

will be independent of µ. Of course, there exist spin systems which admit both gauges
simultaneously, e.g. homogeneous spin rings. These systems will be called ‘weakly
homogeneous’. We will see that the condition of weak homogeneity used in previous
papers [3, 6] is largely superfluous and can be replaced by the homogeneous gauge (but see
section 4).

Note that the eigenvalues of J may non-trivially depend on the gauge. The homogeneous
gauge has the advantage that energy eigenvalues in the 1-magnon-sector are simple functions
of the eigenvalues of J (see below). The quantity

J ≡
∑
µν

Jµν (9)
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is gauge-independent. If exchange parameters satisfying J̃ µν = J̃ νµ are given in the zero
gauge, the corresponding parameters Jµν in the homogeneous gauge are obtained as follows:

Jµν ≡ J̃ µν for µ �= ν (10)

Jµµ ≡ 1
N

J − J̃ µ. (11)

It follows that

j ≡ Jµ =
∑

ν

J̃ µν + Jµµ = J
N

. (12)

Since H commutes with S(3), the eigenspaces Ha of S(3) with eigenvalues M = Ns − a, a =
0, 1, . . . , 2Ns, are invariant under the action of H. Ha will be called the a-magnon-sector. Let
Pa denote the projection onto Ha and

Ha ≡ PaHPa. (13)

An orthonormal basis of Ha is given by the product states ‖m1,m2, . . . ,mN 〉〉 satisfying

s(3)
µ ‖m1,m2, . . . ,mN 〉〉 = mµ‖m1,m2, . . . ,mN 〉〉 (14)

where mµ can assume the 2s + 1 values

mµ = s, s − 1, . . . ,−s. (15)

In the case of s = 1
2 , mµ ∈ {

1
2 ,− 1

2

} ≡ {↑,↓} and state (14) can be uniquely specified by
the ordered set |n1, . . . , na〉 of a spin sites µ with mµ = − 1

2 . We will use both notations
equivalently:

|n1, . . . , na〉 ≡ ‖m1,m2, . . . ,mN 〉〉. (16)

For example,

|1, 3, 4〉 = ‖ ↓↑↓↓↑〉〉 a = 3 N = 5. (17)

We now consider again arbitrary s. The subspace H1 is N-dimensional and, similarly as above,
its basis vectors ‖m1,m2, . . . ,mN 〉〉 may be denoted by |n〉, n = 1, . . . , N, if n denotes the
site with lowered spin, i.e. mµ = s − δµn, µ = 1, . . . , N.

Consider

H1 = P1

(∑
µν

Jµνs(3)
µ s(3)

ν + 1
2

∑
µν

Jµν(s+
µs−

ν + s−
µ s+

ν )

)
P1 (18)

≡ HZ
1 + HXY

1 (19)

and

HZ
1 |n〉 =

(∑
µν

Jµν(s − δµn)(s − δνn)

)
|n〉 (20)

= (s2Nj − 2sj + Jnn)|n〉. (21)

Similarly, we obtain after some calculation

HXY
1 |n〉 = 2s

∑
m,m�=n

Jnm|m〉 + (2s − 1)Jnn|n〉. (22)

Hence

H1 = (s2Nj − 2sj)1Ha
+ 2sJ (23)
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and the eigenvalues of H1 are

Eα = s2Nj + 2s(jα − j) (24)

if jα, α = 1, . . . , N, are the eigenvalues of J. This simple relation between H1 and J only
holds in the homogeneous gauge. Note further that, due to the homogeneous gauge, j is one
of the eigenvalues of J, the corresponding eigenvector having constant entries. We denote
by jmin the minimal eigenvalue of J and by Emin

1 the corresponding minimal eigenvalue
of H1.

3. The main result

Theorem 1. Consider a spin system with AF–Heisenberg coupling scheme and homogeneous
gauge, i.e.

j ≡
∑

ν

Jµν (25)

being independent of µ and

Jµν � 0 for µ �= ν. (26)

Then the following operator inequality holds:

Ha � (Njs2 − 2sa(j − jmin))1Ha
(27)

for all a = 0, 1, . . . , 2Ns.

The rest of this section is devoted to the proof of this theorem.

3.1. Reduction to the case s = 1
2

We will employ the well-known technique of spin fusion. To this end, we construct another
Hamiltonian

Ĥ =
N̂∑

α,β=1

Ĵ αβ ŝα · ŝβ (28)

acting on the Hilbert space Ĥ = H(2Ns, 1
2

)
, i.e. N̂ = 2Ns and ŝ = 1

2 . Intuitively, every spin
site with spin s is replaced by a group of 2s spin sites with spin 1

2 and the coupling between
spin sites is extended to a uniform coupling between groups.

Formally, we set

α ≡ (µ, i) i = 1, . . . , 2s (29)

and

Ĵ αβ = Ĵ (µ,i)(ν,j) ≡ Jµν i, j = 1, . . . , 2s. (30)

The new matrix Ĵ satisfies the homogeneous gauge condition if J does.
According to the well-known theory of the coupling of angular momenta or spins the

tensor product spaces

H (
2s, 1

2

) =
2s⊗

i=1

H (
1, 1

2

)
(31)



6550 H-J Schmidt

can be decomposed into eigenspaces of
(∑2s

i=1 si

)2
with eigenvalues

S(S + 1), S = s, s − 1, . . . ,

{
0 if 2s even
1
2 if 2s odd.

The eigenspace with the maximal S = s will be denoted by Ks and the projector onto this
eigenspace by Ps . Ks is isomorphic to H(1, s). This isomorphism can be chosen such that the
following isometric embedding

js : H(1, s) −→ Ks ↪→ H (
2s, 1

2

)
(32)

satisfies

jssj∗s = Ps

(
2s∑

i=1

si

)
Ps . (33)

Let j denote the tensor product of the js

j : H(N, s) −→ H (
2Ns, 1

2

)
(34)

and P = ⊗N
ν=1 Ps the corresponding projector onto

⊗N
ν=1 Ks which commutes with Ĥ . Then

it follows from (33) that

jH j∗ = PĤP. (35)

In other words, H may be viewed as the restriction of Ĥ onto the subspace of states with
maximal spin S = s within the groups. The eigenvalues of H form a subset of the eigenvalues
of Ĥ .

Relation (30) between the exchange parameters may be written in matrix form as

Ĵ = J ⊗ E (36)

where E is the 2s × 2s-matrix completely filled with 1s. The eigenvalues of E are 2s and 0,
the latter being (2s − 1)-fold degenerate, hence the eigenvalues of the Ĵ-matrix satisfy

ĵ α = 2sjα or 0. (37)

It will be illustrative to check the spectral inclusion property for some known eigenvalues of
Heisenberg Hamiltonians.

The eigenvalue of H for the magnon vacuum state |↑↑ . . .↑〉 is

E0 = Njs2. (38)

For Ĥ we analogously have

Ê0 = (2sN)ĵ
(

1
2

)2
(39)

which is equivalent to (38) by ĵ = 2sj . Similarly, the eigenvalues of H in the 1-magnon-sector
M = Ns − 1 are

Eα = jNs2 + 2s(jα − j) (40)

(cf (24)), hence

Êα = ĵ · 2sN · 1
4 + 2 · 1

2 (ĵα − ĵ ) (41)

which is identical with (40) because of (37).
Analogously to the cases considered it is easy to see that the bounds of the rhs of (27) are

the same for H and Ĥ : since ĵ and ĵmin cannot be zero, they must satisfy

ĵ = 2sj ĵmin = 2sjmin (42)

according to (37).
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Further, the spectrum of Ha is contained in the spectrum of Ĥa . Thus it suffices to prove
(27) for Ĥ , i.e. s = 1

2 .

3.2. Embedding into the magnon Fock space

Throughout this section we set s = 1
2 . Recall that

H (
N, 1

2

) =
N⊕

a=0

Ha (43)

denotes the decomposition of the Hilbert space of the system into eigenspaces of S(3) with
eigenvalues M = 1

2N − a.
Let

Ba(H1) ⊂
a⊗

i=1

H1 (44)

denote the completely symmetric subspace of the a-fold tensor product of 1-magnon-spaces
and

Ba(T ) : Ba(H1) −→ Ba(H1) (45)

be the corresponding restriction of T ⊗ 1 ⊗ · · · ⊗ 1 + · · · + 1 ⊗ · · · ⊗ 1 ⊗ T if T : H1 −→ H1

is any linear operator.
Recall that a basis of Ha is given by the states

|n1, n2, . . . , na〉 1 � n1 < n2 < · · · < na � N (46)

where the ni denote the lowered spin sites. Let

Sa :
a⊗

i=1

H1 −→ Ba(H1) (47)

denote the ‘symmetrizator’, i.e. the sum over all permuted states divided by the square root of
its number. The assignment

|n1, n2, . . . , na〉 �→ Sa|n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |na〉 (48)

can be extended to an isometric embedding denoted by

Ja : Ha −→ Ba(H1). (49)

It satisfies J ∗
a Ja = 1Ha

. Hence Pa ≡ JaJ ∗
a will be a projector onto a subspace of Ba(H1)

denoted by Ia(H1). Obviously,

J ∗
a = J ∗

a Pa. (50)

The states contained in Ia(H1) are called ‘physical states’ since they are in 1 : 1-
correspondence with the states in Ha . The orthogonal complement of Ia(H1) contains
‘unphysical states’ such as |n〉 ⊗ |n〉. More generally, it is easy to see that any superposition
of product states is orthogonal to Ia(H1) iff all product states of the superposition contain at
least one factor twice or more.

We define

H̃ a ≡ J ∗
a Ba(H1)Ja. (51)

Recall that H1 was defined as the Hamiltonian in the 1-magnon sector.
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The main part of the remaining proof will consist of comparing H̃ a with Ha. To this end,
H will be split into a ‘Z-part’ and an ‘XY-part’ according to

H =
∑
µν

Jµνs(3)
µ s(3)

ν + 1
2

∑
µν

Jµν(s+
µs−

ν + s−
µ s+

ν ) (52)

≡ HZ + HXY (53)

and, analogously, Ha = HZ
a + HXY

a and H̃ a = H̃Z
a + H̃ XY

a .

Proposition 1.

HXY
a = H̃ XY

a . (54)

Proof. Let |n1, n2, . . . , na〉 be an arbitrary basis vector of Ha . It suffices to consider a
Hamiltonian of the form

HXY = 1
2 (s+

µs−
ν + s−

µ s+
ν ). (55)

Moreover, we need only consider the case µ < ν since for µ = ν the basis vectors are
eigenvectors of both HXY

a and H̃XY
a with eigenvalues 1

2 . We have to distinguish between four
cases:

(i) µ, ν /∈ {n1, n2, . . . , na}:
HXY

a |n1, n2, . . . , na〉 = 1
2 (s+

µs−
ν + s−

µ s+
ν )|n1, n2, . . . , na〉 (56)

= 0 (57)

= H̃XY
a |n1, n2, . . . , na〉 (58)

since |n1, n2, . . . , na〉 is annihilated by s+
µ and s+

ν .
(ii) µ ∈ {n1, n2, . . . , na}, but ν /∈ {n1, n2, . . . , na}:

HXY
a |n1, . . . , µ, . . . , na〉 = 1

2 s+
µs−

ν |n1, . . . , µ, . . . , na〉
= 1

2 Sort|n1, . . . , ν, . . . , na〉. (59)

Here ‘Sort’ denotes the operator of rearranging a product state into increasing order of
the quantum numbers of its factors,

H̃XY
a |n1, . . . , µ, . . . , na〉 = J ∗

a Ba

(
HXY

1

)Ja|n1, . . . , µ, . . . , na〉
= J ∗

a Ba

(
HXY

1

)Sa|n1〉 ⊗ · · · ⊗ |na〉
= 1

2J ∗
a Sa(s+

µs−
ν |n1〉 ⊗ · · · ⊗ |na〉 + · · · + |n1〉 ⊗ · · · ⊗ s+

µs−
ν |µ〉 ⊗ · · · ⊗ |na〉

+ · · · + |n1〉 ⊗ · · · ⊗ s+
µs−

ν |na〉)
= 1

2J ∗
a Sa|n1〉 ⊗ · · · ⊗ |ν〉 ⊗ · · · ⊗ |na〉

= 1
2 Sort|n1, . . . , ν, . . . , na〉. (60)

Hence HXY
a |n1, . . . , µ, . . . , na〉 = H̃XY

a |n1, . . . , µ, . . . , na〉.
(iii) The case ν ∈ {n1, n2, . . . , na}, but µ /∈ {n1, n2, . . . , na} is completely analogous.
(iv) µ, ν ∈ {n1, n2, . . . , na}: in this case HXY

a |n1, . . . , µ, . . . , ν, . . . , na〉 = 0, since the state
is annihilated by s−

µ as well as by s−
ν . On the other side,

H̃XY
a = 1

2J ∗
a Sa(|n1〉 ⊗ · · · ⊗ |ν〉 ⊗ · · · ⊗ |ν〉 ⊗ · · · ⊗ |na〉

+ |n1〉 ⊗ · · · ⊗ |µ〉 ⊗ · · · ⊗ |µ〉 ⊗ · · · ⊗ |na〉) = 0

since J ∗
a = J ∗

a Pa and Sa(. . .) is orthogonal to the subspace Ia(H1) (see the remark after
(50)). �
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Proposition 2.

HZ
a � H̃ Z

a +
1 − a

4
Nj. (61)

Proof. It turns out that the |n1, . . . , na〉 are simultaneous eigenvectors for HZ
a and H̃Z

a : first,
consider HZ

a and rewrite |n1, . . . , na〉 in the form ‖m1, . . . ,mN 〉〉 satisfying

S(3)
µ ‖m1, . . . ,mN 〉〉 = mµ‖m1, . . . ,mN 〉〉. (62)

It follows that

HZ
a ‖m1, . . . ,mN 〉〉 =

∑
µν

Jµνmµmν‖m1, . . . ,mN 〉〉 (63)

≡ ε‖m1, . . . ,mN 〉〉. (64)

We set

aµ ≡ 1
2 − mµ ∈ {0, 1} (65)

and obtain

ε =
∑
µν

Jµνmµmν (66)

= 1

4

(∑
µν

Jµν

)
−
∑
µν

Jµνaν +
∑
µ �=ν

Jµνaµaν +
∑

µ

Jµµ(aµ)2 (67)

= 1

4
Nj − ja +

∑
µ

′
Jµµ + α (68)

where

α ≡
∑
µ �=ν

Jµνaµaν � 0 (69)

since Jµν � 0 for µ �= ν by the assumption of AF-coupling.
∑′

µ denotes the summation over
all µ with aµ = 1.

Now consider

H̃Z
a ‖m1, . . . ,mN 〉〉 = H̃Z

a |n1, . . . , na〉 (70)

= J ∗
a Sa

(
HZ

1 |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |na〉 + · · · + |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ HZ
1 |na〉

)
.

(71)

The terms HZ
1 |ni〉 are special cases of (63), (66) for a = 1, hence

HZ
1 |ni〉 = 1

4Nj − j + Jni,ni
(72)

since α = 0 in this case. We conclude

H̃Z
a ‖m1, . . . ,mN 〉〉 =

(
aj
(

N
4 − 1

)
+
∑
µ

′
Jµµ

)
‖m1, . . . ,mN 〉〉 (73)

≡ δ‖m1, . . . ,mN 〉〉. (74)

Combining (63), (66) and (73) yields

ε − δ = 1 − a

4
Nj + α � 1 − a

4
Nj (75)
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or

HZ
a − H̃ Z

a � 1 − a

4
Nj1. (76)

�

The rest of the proof is straightforward. Combining propositions 1 and 2 we obtain

Ha � H̃ a +
1 − a

4
Nj1. (77)

Let � be a normalized eigenvector of H̃ a with minimal eigenvalue Ẽa . Then

Ẽa = 〈�|H̃ a�〉 = 〈Ja�|Ba(H1)|Ja�〉 � Ea (78)

where Ea is the minimal eigenvalue of Ba(H1). Since the ground-state energy of non-
interacting bosons is additive, we obtain further

Ea = aEmin(1) = a
(

1
4jN + jmin − j

)
(79)

and

H̃ a � Ẽa1 � a
(

1
4jN + jmin − j

)
1. (80)

Using (77) the final result is

Ha �
(

1
4Nj − a(j − jmin)

)
1. (81)

4. Discussion

In the above proof the two parts of the Hamiltonian according to H = HZ+HXY are considered
separately. Thus this part of the proof could be immediately generalized to the XXZ-model
given by

H(�) = �HZ + HXY � > 0 (82)

similarly as in [6]. However, the considerations in section 2 concerning the homogeneous
gauge and in section 3.1 concerning the reduction to the case s = 1

2 presuppose an isotropic
Hamiltonian. Hence an immediate generalization to the XXZ-model on the basis of the above
proof is only possible for weakly homogeneous systems and s = 1

2 . Compared with the result
in [6] this means that the condition Jµν ∈ {0, J }, J > 0 appearing in [6] can be weakened to
Jµν � 0.

As already pointed out, the above inequality (81) is intended to be applied for small
values of a, i.e. large values of M = Ns − a. For small M much better estimates are known
[3]. However, for small a the inequality cannot be improved since there are examples where
equality holds in (81) for a couple of values of a, e.g. a = 0, . . . , N

9 (see [6, 7]).
Notwithstanding the construction of independent magnon states in particular examples,

the proof of (27) anew establishes that the Heisenberg Hamiltonian is only equivalent to the
Hamiltonian of a Bose gas of magnons if additional interaction terms are considered (see also
[14]). Apart from the repulsion term (69) in the case of AF-coupling an infinite repulsion
term would have to be introduced which guarantees that no site is occupied by more than one
magnon (in the case s = 1

2 ). Thus magnons appear as bosons additionally satisfying the Pauli
exclusion principle. The reader may ask why magnons are not rather considered as fermions,
for which the exclusion principle is automatically satisfied. The reason not to do this is that
the interchange of fermions at different sites would sometimes produce factors of −1 which
cannot be controlled, at least generally. For special topologies, e.g. spin rings or chains, the
independent fermion concept works well and yields the exact solution of the spin- 1

2 XY-model
(see [17]).
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